Robust estimation and inference for heavy tailed GARCH

نویسنده

  • JONATHAN B. HILL
چکیده

We develop two new estimators for a general class of stationary GARCH models with possibly heavy tailed asymmetrically distributed errors, covering processes with symmetric and asymmetric feedback like GARCH, Asymmetric GARCH, VGARCH and Quadratic GARCH. The first estimator arises from negligibly trimming QML criterion equations according to error extremes. The second imbeds negligibly transformed errors into QML score equations for a Method of Moments estimator. In this case, we exploit a sub-class of redescending transforms that includes tail-trimming and functions popular in the robust estimation literature, and we re-center the transformed errors to minimize small sample bias. The negligible transforms allow both identification of the true parameter and asymptotic normality. We present a consistent estimator of the covariance matrix that permits classic inference without knowledge of the rate of convergence. A simulation study shows both of our estimators trump existing ones for sharpness and approximate normality including QML, Log-LAD, and two types of non-Gaussian QML (Laplace and Power-Law). Finally, we apply the tail-trimmed QML estimator to financial data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Estimation and Inference for Heavy Tailed GARCH: Supplemental Material

We prove Lemmas A.1, A.3, A.4 and A.6, and Lemmas B.1 and B.2. Assume all functions satisfy Pollard’s (1984) permissibility criteria, the measure space that governs all random variables in this paper is complete, and therefore all majorants are measurable. Cf. Dudley (1978). Probability statements are therefore with respect to outer probability, and expectations over majorants are outer expecta...

متن کامل

Least Tail-Trimmed Squares for In...nite Variance Autoregressions

We develop a robust least squares estimator for autoregressions with possibly heavy tailed errors. Robustness to heavy tails is ensured by negligibly trimming the squared error according to extreme values of the error and regressors. Tail-trimming ensures asymptotic normality and superp -convergence with a rate comparable to the highest achieved amongst M-estimators for stationary data. Moreov...

متن کامل

Let's get LADE: Robust estimation of semiparametric multiplicative volatility models

We investigate a model in which we connect slowly time varying unconditional long-run volatility with short-run conditional volatility whose representation is given as a semi-strong GARCH (1,1) process with heavy tailed errors. We focus on robust estimation of both long-run and short-run volatilities. Our estimation is semiparametric since the long-run volatility is totally unspecified whereas ...

متن کامل

Supplemental Material for GEL Estimation for Heavy-Tailed GARCH Models with Robust Empirical Likelihood Inference

In the main paper we reported GELITT simulation bias over a grid of trimming fractiles {k ) n , k n }. We now repreat the simulation and fix either k ) n or k n , and report bias, mse, and test statistics. We use k ( ) n ∼ λn/ ln(n), λn and λ ln(n) each with k n ∼ .2 ln(n), and k n ∼ λn/ ln(n), λn and λ ln(n) each with k ( ) n ∼ .05n/ ln(n). We summarize the various λ’s and actual fractile valu...

متن کامل

Interval Estimation of Value-at-Risk Based on GARCH Models with Heavy Tailed Innovations

ARCH and GARCH models are widely used to model financial market volatilities in risk management applications. Considering a GARCH model with heavy-tailed innovations, we characterize the limiting distribution of an estimator of the conditional Value-at-Risk (VaR), which corresponds to the extremal quantile of the conditional distribution of the GARCH process. We propose two methods, the normal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014